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Is it possible for a group to be a matroid?

What is a group?

What is a matroid?
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Definitions

A brief set theory review

A ⊆ B : The set A is a subset of (or equal to) the set B.

Ø : The empty set.

a ∈ A : The element a is in the set A.

|A| = x : The order of (number of elements in) A is equal to x .

C = A \B : C is comprised of all the elements in A that are not in B.

C = A ∪ B : C is comprised of all the elements that are in A or B.
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Definitions

What is a group?

A group is a set G with a binary operation ∗ typically denoted (G , ∗) in
which the following conditions hold:
Closure: ∀a, b ∈ G , a ∗ b ∈ G
Associativity: ∀a, b, c ∈ G , (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity: ∃e ∈ G | ∀a ∈ G , a ∗ e = a
Inverse: ∀a ∈ G , ∃a−1 ∈ G | a ∗ a−1

= e

Examples of groups: (Z,+), (Q, ∗)
Examples of !groups: (N,+), (Z, ∗)
(N,+) is not a group as no additive identity exists.
(Z, ∗) is not a group as there are elements without inverses.
Note: The order of an element a in a group G is the smallest integer k
such that ak = e, where ak = a ∗ a... ∗ a︸ ︷︷ ︸

k times

and e is the group’s identity. If

no such integer exists, a is said to have infinite order.

Josh Gross (York College) Matroids on Groups? 5 / 62



Definitions

What is a group?

A group is a set G with a binary operation ∗ typically denoted (G , ∗) in
which the following conditions hold:
Closure: ∀a, b ∈ G , a ∗ b ∈ G
Associativity: ∀a, b, c ∈ G , (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity: ∃e ∈ G | ∀a ∈ G , a ∗ e = a
Inverse: ∀a ∈ G , ∃a−1 ∈ G | a ∗ a−1

= e

Examples of groups: (Z,+), (Q, ∗)

Examples of !groups: (N,+), (Z, ∗)
(N,+) is not a group as no additive identity exists.
(Z, ∗) is not a group as there are elements without inverses.
Note: The order of an element a in a group G is the smallest integer k
such that ak = e, where ak = a ∗ a... ∗ a︸ ︷︷ ︸

k times

and e is the group’s identity. If

no such integer exists, a is said to have infinite order.

Josh Gross (York College) Matroids on Groups? 5 / 62



Definitions

What is a group?

A group is a set G with a binary operation ∗ typically denoted (G , ∗) in
which the following conditions hold:
Closure: ∀a, b ∈ G , a ∗ b ∈ G
Associativity: ∀a, b, c ∈ G , (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity: ∃e ∈ G | ∀a ∈ G , a ∗ e = a
Inverse: ∀a ∈ G , ∃a−1 ∈ G | a ∗ a−1

= e

Examples of groups: (Z,+), (Q, ∗)
Examples of !groups: (N,+), (Z, ∗)

(N,+) is not a group as no additive identity exists.
(Z, ∗) is not a group as there are elements without inverses.
Note: The order of an element a in a group G is the smallest integer k
such that ak = e, where ak = a ∗ a... ∗ a︸ ︷︷ ︸

k times

and e is the group’s identity. If

no such integer exists, a is said to have infinite order.

Josh Gross (York College) Matroids on Groups? 5 / 62



Definitions

What is a group?

A group is a set G with a binary operation ∗ typically denoted (G , ∗) in
which the following conditions hold:
Closure: ∀a, b ∈ G , a ∗ b ∈ G
Associativity: ∀a, b, c ∈ G , (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity: ∃e ∈ G | ∀a ∈ G , a ∗ e = a
Inverse: ∀a ∈ G , ∃a−1 ∈ G | a ∗ a−1

= e

Examples of groups: (Z,+), (Q, ∗)
Examples of !groups: (N,+), (Z, ∗)
(N,+) is not a group as no additive identity exists.

(Z, ∗) is not a group as there are elements without inverses.
Note: The order of an element a in a group G is the smallest integer k
such that ak = e, where ak = a ∗ a... ∗ a︸ ︷︷ ︸

k times

and e is the group’s identity. If

no such integer exists, a is said to have infinite order.

Josh Gross (York College) Matroids on Groups? 5 / 62



Definitions

What is a group?

A group is a set G with a binary operation ∗ typically denoted (G , ∗) in
which the following conditions hold:
Closure: ∀a, b ∈ G , a ∗ b ∈ G
Associativity: ∀a, b, c ∈ G , (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity: ∃e ∈ G | ∀a ∈ G , a ∗ e = a
Inverse: ∀a ∈ G , ∃a−1 ∈ G | a ∗ a−1

= e

Examples of groups: (Z,+), (Q, ∗)
Examples of !groups: (N,+), (Z, ∗)
(N,+) is not a group as no additive identity exists.
(Z, ∗) is not a group as there are elements without inverses.

Note: The order of an element a in a group G is the smallest integer k
such that ak = e, where ak = a ∗ a... ∗ a︸ ︷︷ ︸

k times

and e is the group’s identity. If

no such integer exists, a is said to have infinite order.

Josh Gross (York College) Matroids on Groups? 5 / 62



Definitions

What is a group?

A group is a set G with a binary operation ∗ typically denoted (G , ∗) in
which the following conditions hold:
Closure: ∀a, b ∈ G , a ∗ b ∈ G
Associativity: ∀a, b, c ∈ G , (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity: ∃e ∈ G | ∀a ∈ G , a ∗ e = a
Inverse: ∀a ∈ G , ∃a−1 ∈ G | a ∗ a−1

= e

Examples of groups: (Z,+), (Q, ∗)
Examples of !groups: (N,+), (Z, ∗)
(N,+) is not a group as no additive identity exists.
(Z, ∗) is not a group as there are elements without inverses.
Note: The order of an element a in a group G is the smallest integer k
such that ak = e, where ak = a ∗ a... ∗ a︸ ︷︷ ︸

k times

and e is the group’s identity. If

no such integer exists, a is said to have infinite order.

Josh Gross (York College) Matroids on Groups? 5 / 62



Definitions

What is a matroid?

A matroid M is comprised of a finite set of elements E , called the ground
set, and a collection I of subsets I ⊆ E , the independent sets, which
satisfy the following:
1) Ø∈ I,
2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I,
3) If I1, I2 ∈ I and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I

In English:
1) The empty set is independent.
2) A subset of an independent set is itself independent.
3) If the order of an independent set is less than the order of another
independent set, there is an element in the larger-order set that can be
added to the smaller-order set to produce another independent set.
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The search for a groupic matroid

Question

Knowing the definitions of a group and a matroid, how can we define a
matroid on a group?

Define the ground set

Define what independence means
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The search for a groupic matroid

Question

Knowing the definitions of a group and a matroid, how can we define a
matroid on a group?

Define the ground set

We will define the ground set of a groupic matroid to be the group’s set.

Define what independence means
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The search for a groupic matroid

Question

Knowing the definitions of a group and a matroid, how can we define a
matroid on a group?

Define the ground set

We will define the ground set of a groupic matroid as the group’s set.

Define what independence means

We will define two elements of a group’s set as independent if their
product (using the group’s operation) is not the group’s identity.

Note: these choices are somewhat arbitrary, but they are intuitive.

Josh Gross (York College) Matroids on Groups? 9 / 62



The search for a groupic matroid

Question

Knowing the definitions of a group and a matroid, how can we define a
matroid on a group?

Define the ground set

We will define the ground set of a groupic matroid as the group’s set.

Define what independence means

We will define two elements of a group’s set as independent if their
product (using the group’s operation) is not the group’s identity.

Note: these choices are somewhat arbitrary, but they are intuitive.

Josh Gross (York College) Matroids on Groups? 9 / 62



The search for a groupic matroid

A word on notation

For convenience, we will write the elements of a group G ’s set in the
following way:

G = {e; a1, a2, ..., am; g1, g
−1
1 , g2, g

−1
2 , ..., gk , g

−1
k }

Where e is the identity, a1...m are the involutions (elements who are their
own inverse), and g1...k are the elements of higher order.

Josh Gross (York College) Matroids on Groups? 10 / 62



The search for a groupic matroid

Definition of a groupic matroid

Let (G , I) be the ordered pair where the ground set is G and I is the
collection of subsets I ⊆ G such that xy 6= e for all x , y ∈ I . This is the
groupic matroid of G , denoted M(G ) = (G , I)
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Examples

Example: M(Z4)

Z4 is the group of integers under addition modulo 4 = {0, 1, 2, 3}

The ground set is {0; 2; 1, 3} as e = 0, 2 + 2 ≡ 0 (mod 4), and 1
and 3 are inverses.

I = ?

Because 0 is the identity, it cannot be in an independent set as if it
were, 0 + 0 ≡ 0 (mod 4) which would mean the set is not independent,
a contradiction.
Similarly, because 2 is its own inverse, if it were in an independent set,
2 + 2 ≡ 0 (mod 4) which would mean the set is not independent, a
contradiction.
Also, 1 and 3 cannot both be in an independent set, as 3 + 1 ≡ 0 (mod
4), which would mean the set is not independent, a contradiction.
Note: this applies to any pair of inverses - only one or the other can be
in an independent set, not both.
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Examples

Example: M(Z4)

Z4 is the group of integers under addition modulo 4 = {0, 1, 2, 3}

Thus, I = {Ø, {1}, {3}} =⇒ M(Z4) = (Z4, {Ø, {1}, {3}}).

Returning to the matroid criteria:
1) Ø∈ I

Clearly, Ø∈ I
2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I

This only occurs when I1 = {1} or I1 = {3} and I2 = Ø, and in both
cases, as confirmed in (1), Ø∈ I

3) If I1, I2 ∈ I and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I
This only occurs when I1 = Ø and I2 = {1} or I2 = {3}. In both
cases, (I2 \ I1) ∪ I1 = I2, which is independent by definition.

Thus, M(Z4) is a matroid.
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Examples

Example: M(Z5)

Z5 is the group of integers under addition modulo 5 = {0, 1, 2, 3, 4}

The ground set is {0; ; 1, 4, 2, 3} as e = 0, and (1, 4) and (2, 3) are
inverses.

I = ?

Again, because 0 is the identity, it cannot be in an independent set as
if it were, 0 + 0 ≡ 0 (mod 5) which would mean the set is not
independent, a contradiction.
Also, (1, 4) and (2, 3) cannot both be in an independent set, as
1 + 4 ≡ 0 (mod 5) (and similarly for (2, 3)), which would mean the set
is not independent, a contradiction.
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Examples

Example: M(Z5)

Z5 is the group of integers under addition modulo 5 = {0, 1, 2, 3, 4}

Thus, I = {Ø, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}} =⇒
M(Z5) = (Z5, {Ø, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}}).

Returning to the matroid criteria:
1) Ø∈ I

Clearly, Ø∈ I
2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I

This is easily, though tediously, verified.

3) If I1, I2 ∈ I and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I
This is easily, though tediously, verified.

Thus, M(Z5) is a matroid.
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Examples

Example: M(K4)

To make the example clearer, we will take K4 to be the set {1, 3, 5, 7}
with the operation multiplication mod 8.

Thus, I = {Ø}
M(K4) = (K4, {Ø})
It is clear that M(K4) satisfies the matroid criteria.
Notice that M(K4) and M(Z4) give different groupic matroids - this
means that given a groupic matroid with a ground set containing four
elements, we can determine the group used to construct the matroid.
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Theorem 1

Theorem 1: M(G ) is a matroid
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Theorem 1

Theorem 1: M(G ) is a matroid

To prove this, we must show that for any group, the matroid criteria hold
for the constructed groupic matroid’s I:
1) Ø∈ I
2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I
3) If I1, I2 ∈ I and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I
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Theorem 1

Theorem 1: M(G ) is a matroid

Ø∈ I
It is vacuously true to say that Ø is independent, as no product of a pair
of elements in Ø yield an identity element.

If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I

If I1, I2 ∈ I and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I
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Theorem 1

Theorem 1: M(G ) is a matroid

Ø∈ I

If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I
Proof by contradiction: assume I1 ∈ I and I2 ⊆ I1, and that I2 /∈ I. This
means that ∃x , y ∈ I2 | x ∗ y = e, where e is the group’s identity element.
However, since x , y ∈ I2 and I2 ⊆ I1, x , y ∈ I1. But, since x ∗ y = e, this
means that I1 is not independent, a contradiction. Therefore, I2 must also
be independent.

If I1, I2 ∈ I and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I
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Theorem 1

Theorem 1: M(G ) is a matroid

Ø∈ I

If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I

If I1, I2 ∈ I and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I
Suppose I1, I2 ∈ I and |I1| < |I2|. Thus, ∀g ∈ I2, either g or g

−1 ∈ I1, or
neither are in I1. Because |I2| > |I1|, there is an element
g∗ ∈ I2 | g∗ ∧ g∗

−1
/∈ I1. Due to this, I1 ∪ {g∗} ∈ I.
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Theorem 1

Theorem 1: M(G ) is a matroid

Having proven that M(G ) satisfies the three matroid criteria, we know
that M(G ) is indeed a matroid.
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Properties of M(G )

Earlier we saw that M(K4) and M(Z4) gave groupic matroids with
differing I: IK4 = {Ø} and IZ4 = {Ø, {1}, {3}}. The properties of each
group’s elements determine I, as demonstrated by the makeup of Z4 and
K4:

Z4 = {0; 2; 1, 3} = {e; a1; g1, g1
−1}

K4 = {1; 3, 5, 7; } = {e; a1, a2, a3; }
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Properties of M(G )

Question

Are all I unique, or can two different groups give isomorphic groupic
matroids?

In the case of Z4 and K4, the order of the groups were equal (4), however
they had a different amount of involutions and higher-order elements.
Perhaps two groups with the same number of involutions and higher-order
elements provide an answer?
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A brief aside

Our answer lies in a comparison of two groupic matroids, one of which
involves quaternions. A crash course follows.
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A brief aside

Quaternions

Quaternions (H), simply put, are a number system that extend the
complex numbers. We need only concern ourselves with the following
information.

A quaternion takes the form: a + bi + cj + dk , where a, b, c , d ∈ R
i , j , and k can be interpreted as unit vectors that satisfy the following
conditions:

i2 = j2 = k2 = −1
ij = k , ji = −k
jk = i , kj = −i
ki = j , ik = −j

A multiplicative group exists for the quaternions, known as the
Hamilton product, which we’ll use to construct a subgroup
H8 = {1,−1, i ,−i , j ,−j , k,−k}.
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Properties of M(G )

M(Z8) vs. M(H8)

Examining M(Z8), the set of integers under addition mod 8, and M(H8),
our constructed subgroup, we confirm that both group sets have the same
structure, {e; a1; g1, g1

−1
, g2, g2

−1
, g3, g3

−1}

Z8 = {0; 4; 1, 7, 2, 6, 3, 5}

H8 = {1;−1; i ,−i , j ,−j , k ,−k}
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Properties of M(G )

M(Z8) vs. M(H8)

Having confirmed that both group sets have the same structure, by our
definition of a groupic matroid, |IZ8 | = |IH8 |, and indeed, the number of
subsets in both I with order 0, 1, 2 are similar and comprised of the
’same’ elements
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Properties of M(G )

M(Z8) vs. M(H8)

IZ8 = { Ø, {1}, {2}, {3}, {5}, {6}, {7}, {1, 2}, {1, 3}, {1, 5}, {1, 6},
{2, 3}, {2, 5}, {2, 7}, {3, 6}, {3, 7}, {5, 6}, {5, 7}, {6, 7}, {1, 2, 3},
{1, 2, 5}, {1, 3, 6}, {1, 5, 6}, {2, 3, 7}, {2, 5, 7}, {3, 6, 7}, {5, 6, 7} }

IH8 = { Ø, {i}, {j}, {k}, {−k}, {−j}, {−i}, {i , j}, {i , k}, {i ,−k},
{i ,−j}, {j , k}, {j ,−k}, {j ,−i}, {k,−j}, {k ,−i}, {−k ,−j}, {−k ,−i},
{−j ,−i}, {i , j , k}, {i , j ,−k}, {i , k,−j}, {i ,−k,−j}, {j , k ,−i},
{j ,−k ,−i}, {k ,−j ,−i}, {−j ,−k,−i} }

With the mapping: 1→ i , 2→ j , 3→ k , 5→ −k , 6→ −j , 7→ −i , we see
that these two collections are isomorphic.
Thus, it is not always true that I (and the groupic matroid itself) are
unique to the group it is constructed over.
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Another matroid?

Earlier we noted that our choices for the groupic matroid’s ground set and
notion of independence were somewhat arbitrary. We can slightly alter
those choices to obtain a different groupic matroid structure.

Definition of a groupic matroid (1)

Let (G , I) be the ordered pair where the ground set is G and I is the
collection of subsets I ⊆ G such that xy 6= e for all x , y ∈ I . This is the
groupic matroid of G , denoted M(G ) = (G , I)

Question

What if our selected notion of independence requires that x and y are
distinct?
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Another matroid?

Definition of a groupic matroid (2)

Let M∗(G ) be the ordered pair (G , I∗, where I∗) is the collection of
subsets I ⊆ G such that, for all elements x , y ∈ I , if x 6= y , then xy 6= e

As in M(G ), an element gi of the group or its inverse gi
−1

may appear in
an independent set of M∗(G ), but not both. However, identities and
involutions can now appear, due to the independence criteria requiring
that x 6= y .
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Another matroid?

Example: M∗(Z4)

Z4 is the group of integers under addition modulo 4 = {0, 1, 2, 3}

The ground set is still {0; 2; 1, 3}
I∗ = ?

1 and 3 cannot both be in an independent set, as 3 + 1 ≡ 0 (mod 4),
which would mean the set is not independent, a contradiction.
The other restrictions no longer apply by the new definition of
independence.

Josh Gross (York College) Matroids on Groups? 32 / 62



Another matroid?

Example: M∗(Z4)

Z4 is the group of integers under addition modulo 4 = {0, 1, 2, 3}

The ground set is still {0; 2; 1, 3}

I∗ = ?

1 and 3 cannot both be in an independent set, as 3 + 1 ≡ 0 (mod 4),
which would mean the set is not independent, a contradiction.
The other restrictions no longer apply by the new definition of
independence.

Josh Gross (York College) Matroids on Groups? 32 / 62



Another matroid?

Example: M∗(Z4)

Z4 is the group of integers under addition modulo 4 = {0, 1, 2, 3}

The ground set is still {0; 2; 1, 3}
I∗ = ?

1 and 3 cannot both be in an independent set, as 3 + 1 ≡ 0 (mod 4),
which would mean the set is not independent, a contradiction.
The other restrictions no longer apply by the new definition of
independence.

Josh Gross (York College) Matroids on Groups? 32 / 62



Another matroid?

Example: M∗(Z4)

Z4 is the group of integers under addition modulo 4 = {0, 1, 2, 3}

The ground set is still {0; 2; 1, 3}
I∗ = ?

1 and 3 cannot both be in an independent set, as 3 + 1 ≡ 0 (mod 4),
which would mean the set is not independent, a contradiction.
The other restrictions no longer apply by the new definition of
independence.

Josh Gross (York College) Matroids on Groups? 32 / 62



Another matroid?

Example: M∗(Z4)

Z4 is the group of integers under addition modulo 4 = {0, 1, 2, 3}

Thus, I∗ = {Ø, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {2, 3},
{0, 1, 2}, {0, 2, 3}}
=⇒ M∗(Z4) = (Z4, {Ø, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3},
{1, 2}, {2, 3}, {0, 1, 2}, {0, 2, 3}}).

Returning to the matroid criteria:
1) Ø∈ I∗

Clearly, Ø∈ I∗

2) If I1 ∈ I∗ and I2 ⊆ I1, then I2 ∈ I∗

This is easily, though tediously, verified.

3) If I1, I2 ∈ I∗ and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I∗

This is easily, though tediously, verified.

Thus, M∗(Z4) is a matroid.
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Theorem 2

Theorem 2: M∗(G ) is a matroid
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Theorem 2

Theorem 2: M∗(G ) is a matroid

To prove this, we must show that for any group, the matroid criteria hold
for the constructed groupic matroid’s I∗:
1) Ø∈ I∗
2) If I1 ∈ I∗ and I2 ⊆ I1, then I2 ∈ I∗
3) If I1, I2 ∈ I∗ and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I∗
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Theorem 2

Theorem 2: M∗(G ) is a matroid

1) Ø∈ I∗

It is vacuously true to say that Ø is independent, as no product of a pair
of elements in Ø yield an identity element.
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Theorem 2

Theorem 2: M∗(G ) is a matroid

2) If I1 ∈ I∗ and I2 ⊆ I1, then I2 ∈ I∗

Proof by contradiction: assume I1 ∈ I∗ and I2 ⊆ I1, and that I2 /∈ I∗. This
means that ∃x , y ∈ I2 | x ∗ y = e, where e is the group’s identity element.
However, since x , y ∈ I2 and I2 ⊆ I1, x , y ∈ I1. But, since x ∗ y = e, this
means that I1 is not independent, a contradiction. Therefore, I2 must also
be independent.
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Theorem 2

Theorem 2: M∗(G ) is a matroid

3) If I1, I2 ∈ I∗ and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ I∗

|I1| < |I2| implies there is at least one element w ∈ I2,w /∈ I1. Unlike
Theorem 1, we cannot assume w is a non-identity or non-involution
element. Thus, we handle the three cases:

Case 1, w = e: Since ∀x ∈ I1, x ∗ e 6= e, I1 ∪ {e} ∈ I∗. If such an x
existed, it would have to be e itself, which by definition is /∈ I1.

Case 2, w = ak (w is an involution): Since ∀x ∈ I1, x ∗ ak 6= e,
I1 ∪ {ak} ∈ I∗. If such an x existed, it would have to be ak itself,
which by definition is /∈ I1.

Case 3, w = gk (∃w−1
,w

−1 6= w): By |I1| < |I2|, ∃g∗ ∈ I2 such that
neither g∗ nor g∗

−1 ∈ I1. If not, |I1| = |I2|. Thus, letting gk = g∗,
I1 ∪ {gk} ∈ I∗.
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Theorem 2

Theorem 2: M∗(G ) is a matroid

Having proven that M∗(G ) satisfies the three matroid criteria, we know
that M∗(G ) is indeed a matroid.
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Counting |I| and |I∗|

Having constructed M(G ) and M∗(G ), and proven they are indeed
matroids, we ask one final question.

Question

What are |I| and |I∗|?
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Counting |I| and |I∗|

Remark

Recall our ordering of G ’s elements:

G = {e; a1, a2, ..., am; g1, g
−1
1 , g2, g

−1
2 , ..., gk , g

−1
k }

|I|: By the notion of independence used to construct M(G ), only
g1, g1

−1
, ..., gk , gk

−1
are eligible to be in an independent set. For each

(gi , gi
−1

), either gi , gi
−1

, or neither are in an independent set. Thus, there
are 3k independent sets.
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Counting |I| and |I∗|

Example: k = 2

I = {Ø, {g1}, {g1−1}, {g2}, {g2−1}, {g1, g2}, {g1, g2−1}, {g1−1
, g2},

{g1−1
, g2

−1}}
|I| = 32 = 9

|I∗|: By the notion of independence used to construct M∗(G ), every
element in G is eligible to be in an independent set.

Similar to our logic to find |I|, for each (gi , gi
−1

), either gi , gi
−1

, or
neither are in an independent set. Thus, there are 3k independent
sets for the elements of higher order.

An independent set can either contain or not contain the identity e.
Thus, there are 2 states for the identity.

An independent set can either contain or not contain an involution ai .
Thus, there are 2 states for each ai .

Combining these, we find that there are 2m+13k independent sets.
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Counting |I| and |I∗|

Example: m = 1, k = 1

I∗ = {Ø, {g1}, {g1−1}, {a1}, {a1, g1}, {a1, g1−1}, {e}, {g1, e}, {g1−1
, e},

{a1, e}, {a1, g1, e}, {a1, g1−1
, e}}

|I∗| = (31)21+1 = 12
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An original matroid structure?

Earlier we saw the notion of independence used for M(G ) was:
IM(G) = {I | ∀x , y ∈ I , xy 6= e}

Effectively, this made the identity and elements of order two ’dependent’
elements, thus, they could never appear in any I ∈ I.

Question

What happens if we define a notion of independence in order to purposely
exclude elements of higher order?
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An original matroid structure?

Jk(G )

We construct a new family of groupic matroid, Jk(G ), with the following
notion of independence:
IJk (G) = {I | ∀x ∈ I , xk 6= e}

This does precisely what we desired: it makes every element of order k
dependent, thus, not in any independent sets.
Thus, Jk(G ) = (G, IJk (G)).
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An original matroid structure?

Example: J3(Z4)

The ground set is once again {0; 2; 1, 3}.

However, as the operator is addition, only elements x | 3x 6≡ 0 (mod 4) are
independent, and can appear in an independent set.
These are: 1, 2, 3.

Thus, IJ3(Z4) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
Thus, J3(Z4) = (Z4, {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}).

Josh Gross (York College) Matroids on Groups? 46 / 62



An original matroid structure?

Example: J3(Z4)

The ground set is once again {0; 2; 1, 3}.
However, as the operator is addition, only elements x | 3x 6≡ 0 (mod 4) are
independent, and can appear in an independent set.

These are: 1, 2, 3.

Thus, IJ3(Z4) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
Thus, J3(Z4) = (Z4, {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}).

Josh Gross (York College) Matroids on Groups? 46 / 62



An original matroid structure?

Example: J3(Z4)

The ground set is once again {0; 2; 1, 3}.
However, as the operator is addition, only elements x | 3x 6≡ 0 (mod 4) are
independent, and can appear in an independent set.
These are: 1, 2, 3.

Thus, IJ3(Z4) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
Thus, J3(Z4) = (Z4, {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}).

Josh Gross (York College) Matroids on Groups? 46 / 62



An original matroid structure?

Example: J3(Z4)

The ground set is once again {0; 2; 1, 3}.
However, as the operator is addition, only elements x | 3x 6≡ 0 (mod 4) are
independent, and can appear in an independent set.
These are: 1, 2, 3.

Thus, IJ3(Z4) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Thus, J3(Z4) = (Z4, {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}).

Josh Gross (York College) Matroids on Groups? 46 / 62



An original matroid structure?

Example: J3(Z4)

The ground set is once again {0; 2; 1, 3}.
However, as the operator is addition, only elements x | 3x 6≡ 0 (mod 4) are
independent, and can appear in an independent set.
These are: 1, 2, 3.

Thus, IJ3(Z4) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
Thus, J3(Z4) = (Z4, {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}).

Josh Gross (York College) Matroids on Groups? 46 / 62



An original matroid structure?

Theorem 3: Jk(G ) is a matroid

To prove this, we must show that for any group, the matroid criteria hold
for the constructed groupic matroid’s IJk (G):
1) Ø∈ IJk (G)

2) If I1 ∈ IJk (G) and I2 ⊆ I1, then I2 ∈ IJk (G)

3) If I1, I2 ∈ IJk (G) and |I1| < |I2|, then ∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ IJk (G)

Josh Gross (York College) Matroids on Groups? 47 / 62



An original matroid structure?

Theorem 3: Jk(G ) is a matroid

1) Ø∈ IJk (G)

It is vacuously true to say that Ø∈ IJk (G) as every element ∈ Ø does not
have order k .
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An original matroid structure?

Theorem 3: Jk(G ) is a matroid

2) If I1 ∈ IJk (G) and I2 ⊆ I1, then I2 ∈ IJk (G)

Proof by contradiction: assume I1 ∈ IJk (G) and I2 ⊆ I1, and that

I2 /∈ IJk (G). This means that ∃x ∈ I2 | xk = e, where e is the group’s
identity element. However, since x ∈ I2 and I2 ⊆ I1, x ∈ I1. But, since
xk = e, this means that I1 is not independent, a contradiction. Therefore,
I2 must also be independent.
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An original matroid structure?

Theorem 3: Jk(G ) is a matroid

3) If I1, I2 ∈ IJk (G) and |I1| < |I2|, then
∃x ∈ (I2 \ I1) | I1 ∪ {x} ∈ IJk (G)

Since |I1| < |I2|, ∃g ∈ I2 | g /∈ I1. However, by the notion of independence
for IJk (G), g

k 6= e. Since the notion of independence only references a
single element, and not a pair of elements (as the previous notions did),
I1 ∪ {g} ∈ IJk (G).
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An original matroid structure?

Theorem 3: Jk(G ) is a matroid

Having proven that Jk(G ) satisfies the three matroid criteria, we know
that Jk(G ) is indeed a matroid.
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An original matroid structure?

Two insights may arise from this structure, as evidenced by the previous
example:

1) IJk (Zn) = P(Zn − {0, a1, a2, ...am}), where ai are the elements

x ∈ Zn | xk = e (in other words, the elements of order k), and P(X ) is
the power set of the set X .
2) |IJk (Zn)| = 2(n−|{0,a1,a2,...am}|)

In our example:
1) IJ3(Z4) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} =
P(Z4 − {0})
2) |IJ3(Z4)| = |{Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},
{1, 2, 3}}| = 8 = 24−1 = 24−|{0}|
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Two insights may arise from this structure, as evidenced by the previous
example:
1) IJk (Zn) = P(Zn − {0, a1, a2, ...am}), where ai are the elements

x ∈ Zn | xk = e (in other words, the elements of order k), and P(X ) is
the power set of the set X .
2) |IJk (Zn)| = 2(n−|{0,a1,a2,...am}|)
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Graphics - |IZn
|, n = 0...10
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Graphics - |IZn
|, n = 0...50
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Graphics - |IZn
|, n = 0...100
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Graphics - |I∗|,m = 0...10, k = 0...10
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Graphics - |I∗|,m = 0...100, k = 0...100

Josh Gross (York College) Matroids on Groups? 59 / 62



Graphics - |I∗|,m = 0...100, k = 0...100
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Graphics - |I∗|,m = 0...100, k = 0...100
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Conclusion

In this presentation, we defined:

Groups

Matroids

Three groupic matroids with differing independence notions

We also:

Proved that all three groupic matroids are indeed matroids

Determined the number of independent sets for two of the three
groupic matroid structures

Showed how the number of independent sets changes as a function of
the input group’s order

Link to groupic matroid generator:
https://jgross11.github.io/GroupicMatroidGenerator.html
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